extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1C24 = C2×S3×Dic6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).1C2^4 | 288,942 |
(C3×C6).2C24 = C2×D12⋊5S3 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).2C2^4 | 288,943 |
(C3×C6).3C24 = C2×D12⋊S3 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).3C2^4 | 288,944 |
(C3×C6).4C24 = D12.33D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).4C2^4 | 288,945 |
(C3×C6).5C24 = D12.34D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | 4- | (C3xC6).5C2^4 | 288,946 |
(C3×C6).6C24 = C2×Dic3.D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).6C2^4 | 288,947 |
(C3×C6).7C24 = C2×D6.D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).7C2^4 | 288,948 |
(C3×C6).8C24 = C2×D6.6D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).8C2^4 | 288,949 |
(C3×C6).9C24 = S32×C2×C4 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).9C2^4 | 288,950 |
(C3×C6).10C24 = C2×S3×D12 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).10C2^4 | 288,951 |
(C3×C6).11C24 = C2×D6⋊D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).11C2^4 | 288,952 |
(C3×C6).12C24 = S3×C4○D12 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).12C2^4 | 288,953 |
(C3×C6).13C24 = D12⋊23D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).13C2^4 | 288,954 |
(C3×C6).14C24 = D12⋊24D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).14C2^4 | 288,955 |
(C3×C6).15C24 = D12⋊27D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 24 | 4+ | (C3xC6).15C2^4 | 288,956 |
(C3×C6).16C24 = Dic6.24D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | 8- | (C3xC6).16C2^4 | 288,957 |
(C3×C6).17C24 = S32×D4 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 24 | 8+ | (C3xC6).17C2^4 | 288,958 |
(C3×C6).18C24 = S3×D4⋊2S3 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | 8- | (C3xC6).18C2^4 | 288,959 |
(C3×C6).19C24 = Dic6⋊12D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 24 | 8+ | (C3xC6).19C2^4 | 288,960 |
(C3×C6).20C24 = D12⋊12D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | 8- | (C3xC6).20C2^4 | 288,961 |
(C3×C6).21C24 = D12⋊13D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 24 | 8+ | (C3xC6).21C2^4 | 288,962 |
(C3×C6).22C24 = D12.25D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | 8- | (C3xC6).22C2^4 | 288,963 |
(C3×C6).23C24 = Dic6.26D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | 8+ | (C3xC6).23C2^4 | 288,964 |
(C3×C6).24C24 = S32×Q8 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | 8- | (C3xC6).24C2^4 | 288,965 |
(C3×C6).25C24 = S3×Q8⋊3S3 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | 8+ | (C3xC6).25C2^4 | 288,966 |
(C3×C6).26C24 = D12⋊15D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | 8- | (C3xC6).26C2^4 | 288,967 |
(C3×C6).27C24 = D12⋊16D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | 8+ | (C3xC6).27C2^4 | 288,968 |
(C3×C6).28C24 = C22×S3×Dic3 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).28C2^4 | 288,969 |
(C3×C6).29C24 = C2×D6.3D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).29C2^4 | 288,970 |
(C3×C6).30C24 = C2×D6.4D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).30C2^4 | 288,971 |
(C3×C6).31C24 = C22×C6.D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).31C2^4 | 288,972 |
(C3×C6).32C24 = C22×D6⋊S3 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).32C2^4 | 288,973 |
(C3×C6).33C24 = C22×C3⋊D12 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).33C2^4 | 288,974 |
(C3×C6).34C24 = C22×C32⋊2Q8 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).34C2^4 | 288,975 |
(C3×C6).35C24 = C2×S3×C3⋊D4 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).35C2^4 | 288,976 |
(C3×C6).36C24 = C2×Dic3⋊D6 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 24 | | (C3xC6).36C2^4 | 288,977 |
(C3×C6).37C24 = C32⋊2+ 1+4 | φ: C24/C22 → C22 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).37C2^4 | 288,978 |
(C3×C6).38C24 = C2×C6×Dic6 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).38C2^4 | 288,988 |
(C3×C6).39C24 = S3×C22×C12 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).39C2^4 | 288,989 |
(C3×C6).40C24 = C2×C6×D12 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).40C2^4 | 288,990 |
(C3×C6).41C24 = C6×C4○D12 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).41C2^4 | 288,991 |
(C3×C6).42C24 = S3×C6×D4 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).42C2^4 | 288,992 |
(C3×C6).43C24 = C6×D4⋊2S3 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).43C2^4 | 288,993 |
(C3×C6).44C24 = C3×D4⋊6D6 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).44C2^4 | 288,994 |
(C3×C6).45C24 = S3×C6×Q8 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).45C2^4 | 288,995 |
(C3×C6).46C24 = C6×Q8⋊3S3 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).46C2^4 | 288,996 |
(C3×C6).47C24 = C3×Q8.15D6 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).47C2^4 | 288,997 |
(C3×C6).48C24 = C3×S3×C4○D4 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).48C2^4 | 288,998 |
(C3×C6).49C24 = C3×D4○D12 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).49C2^4 | 288,999 |
(C3×C6).50C24 = C3×Q8○D12 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).50C2^4 | 288,1000 |
(C3×C6).51C24 = Dic3×C22×C6 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).51C2^4 | 288,1001 |
(C3×C6).52C24 = C2×C6×C3⋊D4 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).52C2^4 | 288,1002 |
(C3×C6).53C24 = C22×C32⋊4Q8 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 288 | | (C3xC6).53C2^4 | 288,1003 |
(C3×C6).54C24 = C22×C4×C3⋊S3 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).54C2^4 | 288,1004 |
(C3×C6).55C24 = C22×C12⋊S3 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).55C2^4 | 288,1005 |
(C3×C6).56C24 = C2×C12.59D6 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).56C2^4 | 288,1006 |
(C3×C6).57C24 = C2×D4×C3⋊S3 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).57C2^4 | 288,1007 |
(C3×C6).58C24 = C2×C12.D6 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).58C2^4 | 288,1008 |
(C3×C6).59C24 = C32⋊82+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).59C2^4 | 288,1009 |
(C3×C6).60C24 = C2×Q8×C3⋊S3 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).60C2^4 | 288,1010 |
(C3×C6).61C24 = C2×C12.26D6 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).61C2^4 | 288,1011 |
(C3×C6).62C24 = C32⋊72- 1+4 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).62C2^4 | 288,1012 |
(C3×C6).63C24 = C4○D4×C3⋊S3 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).63C2^4 | 288,1013 |
(C3×C6).64C24 = C62.154C23 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).64C2^4 | 288,1014 |
(C3×C6).65C24 = C32⋊92- 1+4 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).65C2^4 | 288,1015 |
(C3×C6).66C24 = C23×C3⋊Dic3 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 288 | | (C3xC6).66C2^4 | 288,1016 |
(C3×C6).67C24 = C22×C32⋊7D4 | φ: C24/C23 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).67C2^4 | 288,1017 |
(C3×C6).68C24 = D4×C62 | central extension (φ=1) | 144 | | (C3xC6).68C2^4 | 288,1019 |
(C3×C6).69C24 = Q8×C62 | central extension (φ=1) | 288 | | (C3xC6).69C2^4 | 288,1020 |
(C3×C6).70C24 = C4○D4×C3×C6 | central extension (φ=1) | 144 | | (C3xC6).70C2^4 | 288,1021 |
(C3×C6).71C24 = C32×2+ 1+4 | central extension (φ=1) | 72 | | (C3xC6).71C2^4 | 288,1022 |
(C3×C6).72C24 = C32×2- 1+4 | central extension (φ=1) | 144 | | (C3xC6).72C2^4 | 288,1023 |